top of page
Image by Bernd Klutsch
Image by Charles Deluvio
Book for the website.jpg

​Peer-Reviewed publications

Independent career

  1. Thakkar, R.; Agarwal, D.; Ranaweera, C. B.; Ishiguro, S.; Conda‐Sheridan, M.; Gaudreault, N. N.; Richt, J. A.; Tamura, M.; Comer, J. De novo design of a stapled peptide targeting SARS-CoV-2 spike protein receptor-binding domain. RSC Med. Chem. 2023, ASAP

  2. Feng, J.; De Campos, L.; Seleem, M. A.; Conda‐Sheridan, M. Synthesis and Biological Evaluation of Sulfonylpyridine Derivatives as Potential Anti-Chlamydia Agents. Bioorg. Med. Chem. 2023, 117401

  3. Conformal Electrodeposition of Antimicrobial Hydrogels Formed by Self‐Assembled Peptide Amphiphiles. Zaldivar, G.; Feng, J.; Lizarraga, L.; Yu, Y.; de Campos, L.; Pires de Oliveira, K. M.; Piepenbrink, K. H.; Conda‐Sheridan, M.; Tagliazucchi, M. Adv. Mater. Interfaces 2023, 2300046

  4. De Campos, L.; Fisher, D. J.; Ouellette, S. P.; Conda-Sheridan, M. Design, Biological Evaluation, and Computer-Aided Analysis of Dihydrothiazepines as Selective Antichlamydial Agents.  J. Med. Chem. 2023, 66, 2116-2142

  5. Azadmanesh, J.; Seleem, M. A.; Struble, L.; Wood, N. A.; Fisher, D. J.; Lovelace, J. J; Artigues, A.; Fenton, A.; Borgstahl, G. E. O.; Ouellette, S. P.; Conda-Sheridan, M. The structure of caseinolytic protease subunit ClpP2 reveals a functional model of the caseinolytic protease system from Chlamydia trachomatis. J. Biol. Chem. 2023, 299, 102762

  6. Maraba, O.; Bhattacharya, S.; Conda-Sheridan, M.; Thompson, D. Modelling Peptide Self-Assembly Within a Partially Disordered Tau Filament. Nano Express, 2022, 3, 044004

  7. Martins, A.; De Campos, L.; Conda-Sheridan, M.; De Melo, E.; Pharmacophore modeling, molecular docking and molecular dynamics studies to identify new 5-HT2AR antagonists with the potential for design of new atypical antipsychotics. Mol. Divers. 2022, 1-22

  8. Xing, H.; Rodger, A.; Comer, J.; Picco, A.; Huck-Iriart, C.; Ezell, E.; Conda-Sheridan, M. Urea-Modified Self-Assembling Peptide Amphiphiles That Form Well-Defined Nanostructures and Hydrogels for Biomedical Applications. ACS Appl. Bio Mater. 2022, 5, 4599–4610

  9. Seleem, M. A.; Wood, N. A.; Brinkworth, A. J.; Manam, S.; Carabeo, R. A.; Murthy, A. K.;  Ouellette, S. P.,* Conda-Sheridan, M.* In vitro and in vivo activity of (trifluoromethyl)pyridines as anti-Chlamydia trachomatis agents. ACS Infect. Dis. 2021, 8, 227–241

  10. Seleem, M. A.; Wood, N. A.; Brinkworth, A. J.; Manam, S.; Carabeo, R. A.; Murthy, A. K.;  Ouellette, S. P.,* Conda-Sheridan, M.* In vitro and in vivo activity of (trifluoromethyl)pyridines as anti-Chlamydia trachomatis agents. ACS Infect. Dis. 2021, ASAP

  11. Xing, H.; Chin, S. M.; Udumula, V.; Maddeboina, K.; Rodrigues de Almeida, N.; Huck-Iriart, C.; Picco, A. S.; Lee, S. R.; Zaldivar, G.; Jackson, K. A.; Tagliazucchi, M.; Stupp, S. I.; Conda-Sheridan, M. Control of Peptide Amphiphile Supramolecular Nanostructures by Isosteric Replacements. Biomacromolecules, 2021, 22, 3274–3283

  12. Zaldivar, G.; Conda-Sheridan, M.; Tagliazucchi, M. Scission energies of surfactant wormlike micelles loaded with nonpolar additives. J. Colloid Interface Sci., 2021, 604, 757-764

  13. De Campos, L. J.; Palermo, N.; Conda-Sheridan, M.; Targeting SARS-COV-2 Receptor Binding Domain with Stapled Peptides: An In-Silico Study. J. Phys. Chem. B, 2021, 125, 6572–6586

  14. Zaldivar, G.; Conda-Sheridan, M.; Tagliazucchi, M. Molecular Basis for the Morphological Transitions of Surfactant Wormlike Micelles Triggered by Encapsulated Non-Polar Molecules. Langmuir, 2021, 37, 3093–3103

  15. Wood, N.; Blocker, A.; Seleem, M.; Conda-Sheridan, M.; Fisher, D.; Ouellette, S. The AAA+ ATPase ClpX Is Critical for Growth and Development of Chlamydia Trachomatis. mBio02016-20 

  16. Seleem, M.; Rodrigues de Almeida, N.; Chhonker, Y. S.; Murry, D. J.; Guterres, Z.; Blocker, A. M.; Kuwabara, S.; Fisher, D. J.; Leal, E. S.; Martinefski, M. R.; Bollini, M.; Monge, M. E.; Ouellette, S.; Conda-Sheridan, M. Synthesis and Antichlamydial Activity of Potential Activators of Cylindrical Proteases. J. Med. Chem. 2020, 63, 4370–4387

  17. Zaldivar, G.; Conda-Sheridan, M.; Tagliazucchi, M. Twisting of Charged Nanoribbons to Helicoids Driven by Electrostatics. J. Phys. Chem. B. 2020, 124, 15, 3221-3227

  18. Sang, M.; Wang, H.; Shen, Y.; Rodriguez de Almeida, N.; Conda-Sheridan, M., Li, Y.; Du, L. Identification of an Anti-MRSA Cyclic Lipodepsipeptide, WBP-29479A1, by Genome Mining of Lysobacter antibioticus. Org. Lett. 2019, 21, 6432-643

  19. Rodriguez de Almeida, N.; Catazaro, J.; Chhonker, Y.; Murry, D.; Powers, R.; Conda-Sheridan, M. Understanding the forces involved inmembrane interactions of antibacterial peptides and their influence on biological activity and mechanics. Peptides 2019, 170119

  20. Zaldivar, G.; Vemulapalli, S.; Udumula, V.; Conda-Sheridan, M.*; Tagliazucchi, M. Self-Assembled Nanostructures of Peptide-Amphiphiles: Charge Regulation by Size Regulation. J. Phys. Chem. C 2019, 123, 17606-17615

  21. Rodrigues de Almeida, N.; Han, Y.; Perez, J.; Kirkpatrick, S.; Wang, Y.; Conda-Sheridan, M. Design, Synthesis, and Nanostructure-Dependent Antibacterial Activity of Cationic Peptide Amphiphiles. ACS Appl. Mater. Interfaces. , 11, 2790-2801

  22. Wood, N.; Chung, K.; Blocker, A.; Rodriguez de Almeida, N.; Conda-Sheridan, M.; Fisher, D.; Ouellette, S. Initial Characterization of the Two ClpP Paralogs of Chlamydia trachomatis Suggests Unique Functionality for Each. J. Bacteriol. 2018, JB.00635-18

  23. Zaldivar, G.; Samad, M.; Conda-Sheridan, M.; Tagliazucchi, M. Self-Assembly of Model Short Triblock Amphiphiles in Dilute Solution. Soft Matter 2018, 14, 3171-3181

  24. Samad, M.; Krishnaiah, M.; Rodriguez de Almeida, N.; Conda-Sheridan, M. Facile Protocol for the Synthesis of Self-Assembling Polyamine-based Peptide Amphiphiles (PPAs) and Related Biomaterials. JoVE. 2018, 25.

  25. Krishnaiah, M.; Rodrigues de Almeida, N.; Udumula, V.; Song, Z.; Chhonker, Y. S.; Abdelmoaty, M. M.; Aragao do Nascimento, V.; Murry, D. J.; Conda-Sheridan, M. Synthesis, biological evaluation, and metabolic stability of new antibacterial phenazines. Eur. J. Med. Chem. 2018, 143, 936-947

  26. Dias de Oliveira, P.; Rodrigues de Almeida, N.; Conda-Sheridan, M.; do Prado Apparecido, R.; Michelettia, A. C.; Pereira Carvalhoc, N. C; dos Anjos dos Santos, E.; Marques, M. R.; de Arrudae, E. J.; Braz Alcantara, G.; Silva de Oliveira, L. C.; Pires de Lima, D.; Beatriz, A. Ozonolysis of neem oil: Preparation and characterization of potent antibacterial agents against multidrug resistant bacterial strains. RSC Adv. 2017, 7, 34356-34365

  27. Samad, M. B.; Chhonker, Y. S.; Contreras, J. I.; McCarthy, A.; McClanahan, M., Murry, D. J., Conda-Sheridan, M. Developing Polyamine-based Peptide Amphiphiles with Tunable Morphology and Physicochemical Properties. Macromol. Biosci. 2017 17, 1700096.

  28. Basiri, A.; Xiao, M.; Mc Carthy, A.; Dutta, D. Byrereddy, S. N.; Conda-Sheridan, M. Design and synthesis of new piperidone grafted acetylcholinesterase inhibitors. Bioorg. Med. Chem. Lett. 2017, 27, 228– 231

  29. Udumula, V*. ; Endres, J. L. ; Harper, C. N.; Jaramillo, L.; Zhong, H.; Bayles, K. W. ; Conda-Sheridan, M*. A Simple Synthesis of Endophenazine G and Its Analogues and Their Biological Evaluation as anti-methicillin-resistant Staphylococcus aureus agents. Eur. J. Med. Chem. 2016, 128, 710– 721

Postdoc, graduate, and undergraduate studies

  1. Conda-Sheridan, M.*; Lee, S. S.*; Preslar, A. T.; Stupp, S. I. Esterase-Activated Release of Naproxen from Supramolecular Nanofibres. Chem. Comm. 2014, 50, 13757– 13760

  2. Conda-Sheridan, M.*; Park, E. J.*; Beck, D. E.; Reddy, P. V. N.; Nguyen. T. X.; Hu, B.; Chen, L.; White J. J.; van Breemen, R. B.; Pezzuto, J. M.; Cushman, M. Design, Synthesis, and Biological Evaluation of Indenoisoquinoline Rexinoids with Chemopreventive Potential. J. Med. Chem., 2013, 56, 2561–2605

  3. Conda-Sheridan, M.*; Reddy, P. V. N.*; Morrell, A.; Chen, L.; van Breemen, R. B.; Park, E. J.; Kondratyuk, T. P.; Pezzuto, J. M.; Cushman, M. Synthesis and Biological Evaluation of Indenoisoquinolines That Inhibit Both Tyrosyl-DNA Phosphodiesterase I (Tdp1) and Topoisomerase I (Top1). J. Med. Chem., 2013, 56, 182–200

  4. Conda-Sheridan, M.*; Chen, L.*; Reddy, P. V. N.; Morrell, A.; van Breemen, R. B.; Park, E. J.; Kondratyuk, T. P.; Pezzuto, J. M.; Cushman, M. Identification, Synthesis, and Biological Evaluation of the Metabolites of 3-Amino-6-(3′-aminopropyl)-5H-indeno[1,2-c]isoquinoline-5,11-(6H)dione (AM6–36), a Promising Rexinoid Lead Compound for the Development of Cancer Chemotherapeutic and Chemopreventive Agents. J. Med. Chem., 2012, 55, 5965–5981

  5. Nguyen, T. X.; Morrell, A.; Conda-Sheridan, M.; MArchand, C.; Agama, K.; Bermingam, A.; Stephen, A. G.; Chergui, A.; Naumova, A.; Fisher, R.; O’Keefe, B. R.; Pommier, Y.; Cushman, M. Synthesis and Biological Evaluation of the First Dual Tyrosyl-DNA Phosphodiesterase I (Tdp1)–Topoisomerase I (Top1) Inhibitors. J. Med. Chem., 2012, 55, 4457–4478

  6. Park, E. J.; Kiselev, E.; Conda-Sheridan, M.; Cushman, M.; Pezzuto, J. M. Induction of Apoptosis by 3-Amino-6-(3-aminopropyl)-5,6-dihydro-5,11-dioxo-11H-indeno[1,2-c]isoquinoline via Modulation of MAPKs (p38 and Jun N-terminal Kinase) and c-Myc in HL-60 Human Leukemia Cells. J. Nat. Prod., 2012, 75, 378–384

  7. Zhang, K. Conda-Sheridan, M.; Cooke, S. R.; Louie, J. N-Heterocyclic Carbenes Bound to Nickel(I) Complexes and Their Role in Catalysis. Organometallics, 2011, 30, 2546–2552

  8. Park, E.; J.; Kondratyuk, T.P.; Morrell, A.; Kiselev, E.; Conda-Sheridan, M.; Cushman, M.; Ahn, S.; Choi, Y.; White, J.J.; van Breemen, R. B.; Pezzuto, J. M. . Induction of Retinoid X Receptor Activity and Consequent Up-regulation of p21WAF1/CIP1 by Indenoisoquinolines in MCF7 Cells. Can. Prev. Res. 2011, 4, 592–607

  9. Marler, L.; Conda-Sheridan, M.; Cinelli, M.A.; Morrell, A.E.; Cushman, M.; Chen, L.; Huang, K.; Van Breemen, R.; and Pezzuto, J. M. Cancer Chemopreventive Potential of Aromathecins and Phenazines, Novel Natural Product Derivatives. Anticancer Res. 2010, 30, 4873–4882

  10. Conda-Sheridan, M.; Marler, L.; Park, E. J.; Kondratyuk, T. P.; Jermihov, K.; Mesecar, A. D.; Pezzuto, J. M.; Asolkar, R. N.; Fenical, W.; Cushman, M. Potential Chemopreventive Agents Based on the Structure of the Lead Compound 2-Bromo-1-hydroxyphenazine, Isolated from Streptomyces Species, Strain CNS284. J. Med. Chem. 2010, 53, 8678–8689

  11. Wang, S. C.; Troast, D. M.; Conda-Sheridan, M.; Zuo, G.; LaGarde, D.; Louie, J.; Tantillo, D. J. Mechanism of the Ni(0)-Catalyzed Vinylcyclopropane− Cyclopentene Rearrangement. J. Org. Chem. 2009, 74, 7822–7833

  12. Gardner, J. S.; Conda-Sheridan, M.; Smith, D. N.; Harrison, R. G.; Lamb, J. D. Anion Binding by a Tetradipicolylamine-Substituted Resorcinarene Cavitand. Inorg. Chem. 2005, 44, 4295-4300

  13. Nowak, I.; Conda-Sheridan, M.; Robins, M. J. Nucleic Acid Related Compounds. 127. Selective N-Deacylation of N,O-Peracylated Nucleosides in Superheated Methanol J. Org. Chem. 2005, 70, 7455-7458


  1. Cushman, M.; Nguyen, T. X.; Conda-Sheridan, M. Synthesis and use of dual tyrosyl-DNA   phosphodiesterase I (tdp1)​- topoisomerase I (top1) inhibitors. US 2013-13834652. Dec 26, 2013


  1. Rodriguez de Almeida, N.; Conda-Sheridan, M. A Review of the Molecular Design and Biological Activities of RXR Agonists. Med. Res. Rev. 2019, 39, 1372-1397

Book Chapters

  1. Conda-Sheridan, M. Self-assembling biomaterials as nanocarriers for the targeted delivery of drugs for cancer. Self-assembling Biomaterials: Molecular Design, Characterization and Application in Biology and Medicine. 1st  ed. Helena S. Azevedo, Ricardo M. P. da Silva Eds.; Woodhead Publishing, 2018, Ch 23; pp 495-532

  2. Conda-Sheridan, M.; Krishnaiah, M. Protecting Groups in Organic Synthesis. Peptide Synthesis - Methods and Protocols. 1st ed. Waleed Hussein, Mariusz Skwarczynski, Istvan Toth Eds.; Springer, 2020, Ch 7

bottom of page